

13.2, 13.3, and 13.4

I. 13.2 – Saturated Solutions and Solubility | PART #2

Define **Saturated** – A solution in which undissolved solute and dissolved solute are in equilibrium.

The amount of solute needed to form a saturated solution in a given quantity of solvent is known as the Solubility of that solute.

Define **Solubility** – The amount of a substance that dissolves in a given quantity of solvent at a given temperature to form a saturated solution.

The Theorem of Solubility –

The solubility of a particular solute in a particular solvent is the maximum amount of the solute that can dissolve in a given amount of the solvent at a specified temperature, assuming that excess solute is present.

- For example, the solubility of NaCl in water at 0 degrees Celsius is 35.7 grams per 100 mL of water. This is the maximum amount of NaCl that can be dissolved in water to give a stable equilibrium solution at that temperature.

Define **Unsaturated** – A solution containing less solute than a saturated solution.

Define **Supersaturated** – A solution containing more solute than an equivalent saturated solution.

II. 13.3 – Factors Affecting Solubility

Solute-Solvent Interactions –

Solute-solvent interactions affect solubility in the sense that...

the stronger the attractions between solute and solvent molecules, the greater the solubility of the solute in that solvent.

- Polar liquids tend to dissolve in Polar solvents.
- Nonpolar liquids tend to dissolve in Nonpolar solvents.

This is where the saying, "like-dissolves-like" comes into play.

If you were to mix liquids and they were to mix in all proportions, you would say they are Miscible.

Define **Miscible** - Liquids that mix in all proportions.

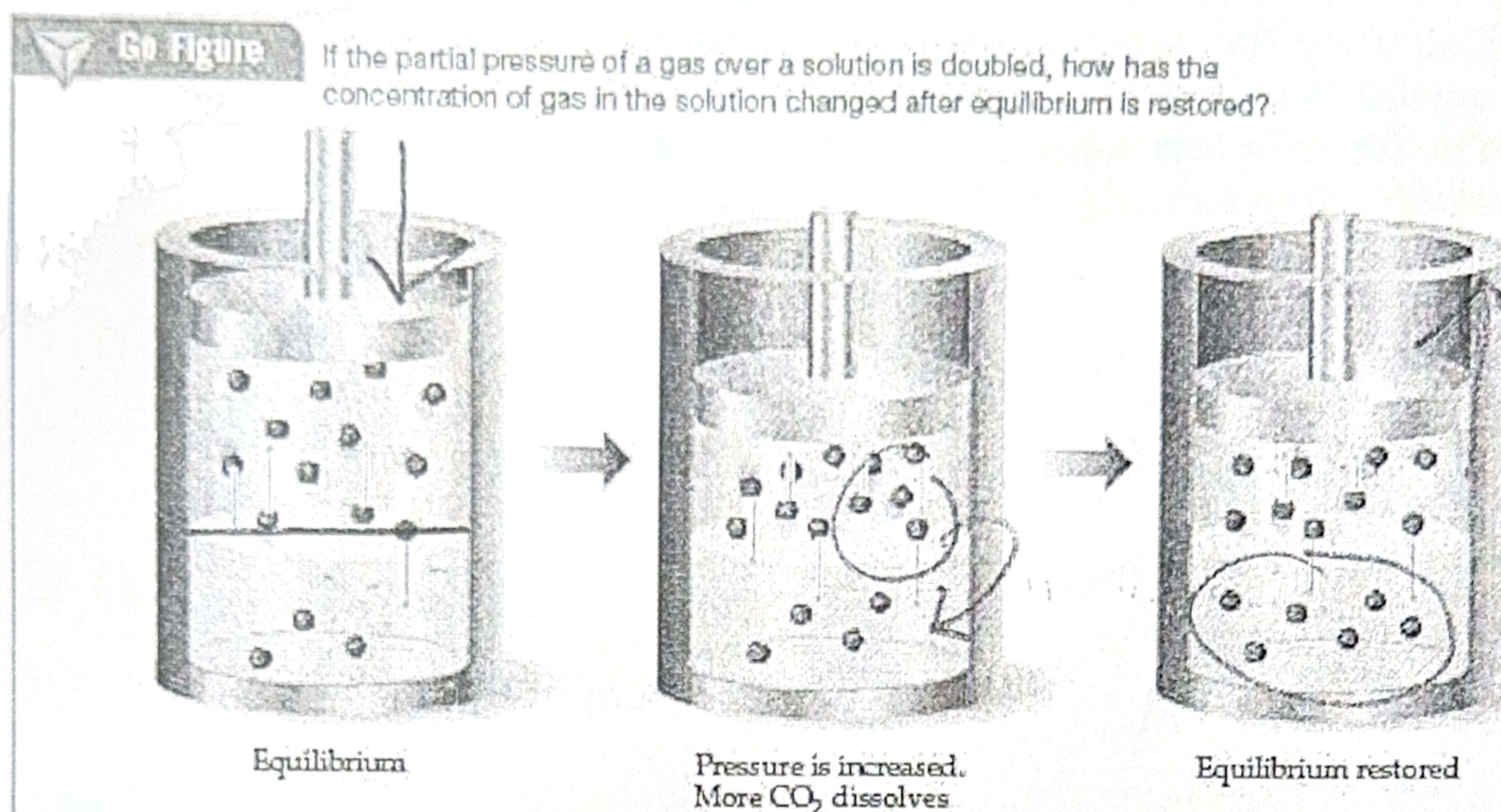
If they don't, whereas those that do not dissolve in one another, they are Immiscible.

Define **Immiscible** - Liquids that do NOT dissolve in one another to a significant extent.

- Predict whether each of the following substances is more likely to dissolve in the nonpolar solvent carbon tetrachloride (CCl_4) or in water: C_7H_{16} , Na_2SO_4 , HCl , and I_2 .

C_7H_{16} - CCl_4 HCl - water

Na_2SO_4 - water I_2 - CCl_4


Pressure Effects - **GAS**

The "Theorem" of Pressure Effects on a Gas's Solubility -

The solubility of a gas in any solvent is increased as the partial pressure of the gas above the solvent increases.

Thus, we can formulate the general understanding that...

the solubility of a gas in a liquid solvent increases in DIRECT PROPORTION to the partial pressure of the gas above the solution.

▲ Figure 13.12 Effect of pressure on gas solubility.

- I increased the pressure; I essentially pushed more gas to be forced into the solvent. More gas becomes dissolved in solution because I increased the pressure.

The relationship between pressure and solubility is expressed by

Henry's Law.

$$S_g = K P_g$$

- S_g - The solubility of the gas in the solvent (usually expressed as molarity)
- K - The proportionality constant known as the Henry's law constant.
 - The value of K depends on the solute, solvent, and temperature.
- P_g - The partial pressure of the gas over the solution.

Don't forget about SIG-FIGS!

2. Calculate the concentration of CO₂ in a soft drink that is bottled with a partial pressure of CO₂ of 4.0 atm over the liquid at 25 degrees Celsius. The Henry's law constant for CO₂ in water at this temperature is 3.4E-2 mol/L-atm.

$$S_g = K_P g$$

$$S_g = (3.4 \times 10^{-2} \frac{\text{mol}}{\text{L} \cdot \text{atm}})(4.0 \text{ atm})$$

$$S_g = 0.136 \text{ mol/L}$$

$$S_g \approx 0.14 \text{ M}$$

The Solubility is expressed in the same units as concentration, SC
 $S_g = 0.14 \text{ M}$ is THE Concentration

Temperature Effects -

- The solubility of most solid solutes in water increase as the solution temperature increases.
 - Of course, there are exceptions to this rule. (Who cares?)
- The solubility of gases in water decrease with increase temperature.

Therefore, for temperature effects, the solubility of solid and gaseous solutes are inverse.

III. 13.4 – Expressing Solution Concentration | PART #1

Calculation of Mass-Related Concentrations: ppm – and beyond.

3. (a) A solution is made by dissolving 13.5 g of glucose into 0.100 kg of water. What is the mass percentage of solute in this solution? (b) Then, a 2.5 g sample of groundwater was found to contain 5.4 micrograms of zinc ions. What is the concentration of the zinc ions in parts per million?

a.) We want mass percent.

13.5 g solute

0.100 kg solvent \rightarrow 100 g solvent

$$\%(\text{w/w}) = \frac{\text{Solute in (g)}}{\text{SOLUTION in(g)}} \times 100\%$$

$$\%(\text{w/w}) = \frac{13.5 \text{ g}}{(13.5 \text{ g} + 100 \text{ g})} \times 100\%$$

$$\%(\text{w/w}) = 11.8942\% \text{ (3 sig figs)}$$

$$\%(\text{w/w}) = 11.9\%$$

b.) We want ppm

2.5 g of solvent

5.4 μg of solute

$$\%(\text{w/w}) = \frac{\text{Solute in (g)}}{\text{SOLUTION in(g)}} \times 10^6$$

$$\%(\text{w/w}) = \frac{5.4 \mu\text{g}}{5.4 \mu\text{g} + 2.5 \text{ g}} \times 10^6$$

$$= 2.2 \text{ ppm}$$

Calculation of Molality: m -

4. A solution is made by dissolving 4.35 g of glucose in 25.0 mL of water at 25 degrees Celsius. Calculate the molality of glucose in the solution.
Water has a density of 1.00 g/mL.

$$\text{Molality} = \frac{\text{mol solute}}{\text{kg solvent}}$$

$$\frac{4.35 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6}{180.16 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6} \left| \begin{array}{c} 1 \text{ mol } \text{C}_6\text{H}_{12}\text{O}_6 \\ 180.16 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6 \end{array} \right. = 0.0241452043 \text{ mol}$$

Density
as a
conversion
factor.

$$\frac{25.00 \text{ mL } \text{H}_2\text{O}}{1.00 \text{ mL } \text{H}_2\text{O}} \left| \begin{array}{c} 1.00 \text{ g } \text{H}_2\text{O} \\ 1.00 \text{ mL } \text{H}_2\text{O} \end{array} \right. = 25.00 \text{ g } \text{H}_2\text{O}$$

$\rightarrow 2.500 \times 10^{-2} \text{ kg}$

$$\text{Molality (m)} = \frac{0.0241452043 \text{ mol}}{2.500 \times 10^{-2} \text{ kg}}$$

$$m = 0.9658081705 \text{ molal}$$

$$m = \boxed{0.966 \text{ molal}}$$