

Chapter #14 – Chemical Kinetics

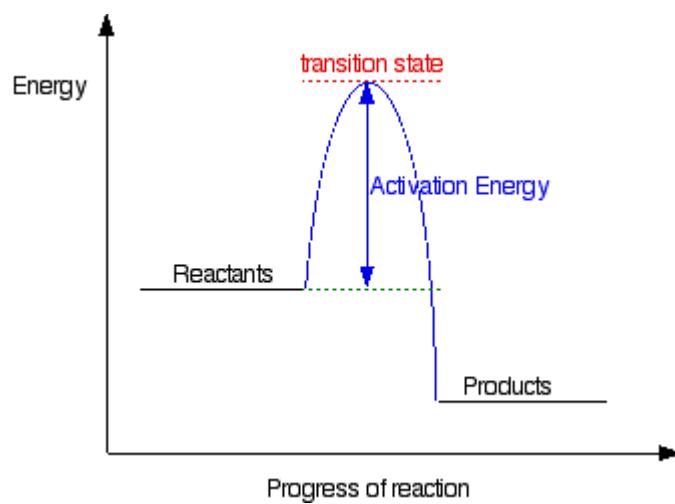
1. Use the following table to calculate the rate of disappearance for X_2 at different times.

Time (s)	[X_2]
0.00 s	1.30 M
15.0 s	1.10 M
30.0 s	0.80 M
60.0 s	0.20 M
120.0 s	0.50 M

a. $0 \text{ s} \rightarrow 120 \text{ s}$

b. $0 \text{ s} \rightarrow 60 \text{ s}$

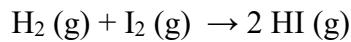
c. $15 \text{ s} \rightarrow 60 \text{ s}$


d. What would the rate of disappearance be for Y at these time intervals?

2. Give the $t_{1/2}$ equation.

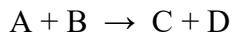
3. What effect does temperature have on the rate constant (k)?

4. How does the activation energy affect the rate constant (k)?


5. Label the following graph:

1st order reaction:

2nd order reaction:


1. Consider the data for hydrogen concentration $[H_2]$, iodine concentration $[I_2]$ and the rate of reaction (moles per liter per second or $mol \cdot L^{-1}/s$) for this reaction:

Trial	$[H_2]$ (mol/L)	$[I_2]$ (mol/L)	Rate (mol \cdot L $^{-1}$ /s)
1	0.01	0.05	0.04
2	0.02	0.05	0.08
3	0.05	0.01	0.02
4	0.05	0.03	0.54


What is the overall reaction order?

2. Consider a hypothetical reaction:

Doubling the concentration of A causes the reaction rate to increase by a factor of four. This is done while the concentration of B is held constant. Tripling the concentration of B, while the concentration of A is held constant, causes the reaction rate to increase by a factor of nine. What is the rate law expression for this reaction?

3. Consider the reaction:

Trial	$[\text{NO}_2^-]$ (mol/L)	$[\text{NH}_4^+]$ (mol/L)	Rate (mol·L ⁻¹ /s $\times 10^{-7}$)
1	0.0100	0.200	5.4
2	0.0200	0.200	10.8
3	0.0400	0.200	21.6
4	0.200	0.200	10.8
5	0.200	0.400	21.6
6	0.200	0.600	32.4

Determine the rate law expression for this reaction:

4. In a reaction involving only one reactant, A, the rate of the reaction increases by a factor of 27 when the concentration of A is tripled. What is the rate law expression for this reaction?